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Finite Impulse Response (FIR) Filters

 What s a Filter?

Any medium through which the signal passes, whatever its form, can be regarded as a filter.

However, we do not usually think of something as a filter unless it can modify the signal in some way. For example,
speaker wire is not considered a filter, but the speaker is

A digital filter is just a filter that operates on digital signals, such as sound represented inside a
computer.

It is a computation which takes one sequence of numbers (the input signal) and produces a new
sequence of numbers (the filtered output signal).

Types of Filter

Low-pass Filter

High-pass Filter Band-pass Filter

Band-stop Filter
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Finite Impulse Response (FIR) Filters

* It is one of two main types of digital filters used in DSP applications.

» FIR filter gets its name because the same number (finite) input values you get going into the filter, you get coming out of
the output

» The design methods of FIR filter based on approximation of ideal filter

* Properties of FIR filter
» Require no feedback: This means that any rounding errors are not compounded by summed iterations. The same
relative error occurs in each calculation. This also makes implementation simpler.

» Inherent stability: This is due to the fact that, because there is no required feedback, all the poles are located at the
origin and thus are located within the unit circle (the required condition for stability in a Z transformed system).

» Phase Issue: can easily be designed to be linear phase by making the coefficient sequence symmetric; linear phase,
or phase change proportional to frequency, corresponds to equal delay at all frequencies. This property is
sometimes desired for phase-sensitive applications, for example data communications, crossover filters, and

mastering.
« The main disadvantage of FIR filters is that considerably more computation power
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Finite Impulse Response (FIR) Filters

A discrete-time FIR filter of order N. The top part is an N-stage delay line with N +
1 taps. Each unit delay is a z* operator in the Z-transform notation.

The output y of a linear time invariant system is determined by convolving its input
signal x with its impulse response b.

For a discrete-time FIR filter, the output is a weighted sum of the current and a
finite number of previous values of the input.

The operation is described by the following equation, which defines the output
sequence y[n] in terms of its input sequence X[n]:

y(n) = box[n] + byx[n — 1] + byx[n — 2] + ... + byx[n — N]

N—-1
y(m) = ) bx(n = k)
k=0

* x(n) : is the input sequence

* y(n) : is the output sequence

* by : filter coefficients that make up the impulse response
N: is the filter order
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FIR Impulse response

N-1 N-1
y) = Y hx(n—k) k()= ) hdln -]
k=0 k=0

The Z-transform of the impulse response yields the transfer function of the FIR filter

H(z) = Z{h(n)}
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Linear phase FIR filter — Symmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

N-1
H(ej“)) = Z h(n)e=/®n
n=0

Since H(el“") is a complex value for linear phase FIR filter , then we can
represent it in terms of magnitude and phase

(&) = £ (o) eI
Equating (1) & (2)

3 hwpeton = 4{(es)]e e
n=0

e 7% = cosf —jsin@

N-
z h(n)[cos wn — j sin wn] i|H(ej“’)|[cos aw — j sin aw]

Equating sin and cos terms

=2

-1
h(n)[coswn] = i|H(ej“’)|[cos aw]

1Y%

D
=

h(n)[sinwn] = + |H(ej“)) | [sin aw]

S
Il
o

YN h(n)[sin wn] _ sinaw
Y N—3 h(n)[cos wn] ~ cos aw

N- N-1
Z h(n) sin wn cos aw = Z h(n) cos wn sin aw
=0 n=0

2

z h(n)[cos wn sin aw — sin wn cos aw]

N-
Z h(n)[sin(a — n)w] =0

The above equation will be zero when

sin(A — B) = sinA cos B — cos Asin B

h(n) = h(N —1—n)

N-1

adQ=——"

2
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Linear phase FIR filter — Symmetric Impulse response

h(n) = h(N —1—n)

N-1
o0 =—

2

From the equations and the conditions we can conclude that FIR filter will have
constant phase and group delays when the impulse response is symmetrical about a = %

® 3 0 3 ® 3
N 2 2.9 2
1
T [ h h HI {
"0 12 34 5 6 ' 0 1 2 3g8so
_ 6—1
N-1 7-1 - -
a=—— =5 2

h(n) =h(N —1—n) h(n) =h(N —1-—n)

= h(7-1-5) ~p=il=5)
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Linear phase FIR filter — Antisymmetric Impulse response

Let h(n) be an impulse response of a system then its Fourier transform can
be expressed as

oy - iom YN h(n)[sin wn] _sin(B — aw)
H(e’™) = 7; hln)e YN-Lh(n)[coswn] cos(B — aw)

Since H(el*" is a complex value for linear phase FIR filter , then we can | ¥=1 N-1
represent it in terms of magnitude and phase. If only constant group delay z h(n) sin wn cos(ff — aw) = Z h(n) cos wn sin(f — aw)
Is required =0 =0

H(eJ) = +|H(e®) ]~ B-aw) -
Equating (1) & (2) 0= z h(n)[cos wnsin(f — aw) — sin wn cos(f — aw)]
N-1 n=0
Z h(n)e jon = ilH(eije—j(ﬂ—aw) - sin(A — B) = sinA cos B — cos Asin B
T e”/? = cos —jsing h()[sin(8 — (¢ — mw)] = 0
. =0
h(n)[cos wn — j sinwn] = £|H(e/®)|[cos(B — aw) — j sin(f — aw)] b
n=0 B = r The equation will be zero when
Equating sin and cos terms 2
N-1
N z h(n)[cos(a —n)w] =0 h(n) = —h(N — 1
h(n)[cos wn] = i|H(ej‘”)|[cos([>’ — aw)] . B (n) = —h(N-1-n)
n:

=
Il
o
=
I
—_

=
A
N

h(n)[sin wn] = i|H(ej“’)|[sin(B —aw)]
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Linear phase FIR filter — Asymmetric Impulse response

h(n) = —=h(N —1—n)

From the equations and the conditions we can conclude that FIR filter will have
constant group delay and 1= constant phase delay

N-1 _7-1 N-1 6—1
2 a=—— == 2 a=—— =5
[ h(n) = —h(N —1-n) 1T [ h(n) = —h(N — 1 —n)
® ° > =—h(7—1-5) o *—»> =—h(6—1-5
2 3 415 6 0 1 2 314 5 ( )
-1 1
-2 -2

www.iammanuprasad.com



YouTube - IMPLearn

Frequency response of Linear phase FIR filters

Depending on the value of N and the type of symmetry of filter impulse response sequence
there are mainly 4 types of linear phase FIR filter
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Casel : Symmetrical impulse response and N - odd

h(n) ¢ 3 To arrange the limit we assume
N=7 3
21| 12 When n = %42 Whenn = N — 1
1 1 m=N—-1—n N+ 1
T { X =L =3 L -N-1-m N-1=N-1-m
) ~ N ) n=N-1—-m 2
0 1 213 4

Given h(n) and find the Fourier transform H(ei) Substitute in (1)

N-3

< H(el®) = ZZ: h(n)e /@™ + h(N » 1) e_jw(%) + Z h( Yejo( )
H(ej‘”) — z h(n)e /®n P 2
n=0

N—3

H(elw) Z h(n)e /@™ + h( - 1) —Jw(¥) + Z h(N —1— )e—jw(N—l— )

Now lets split the equation into three parts

N 3 - For symmetric impulse response h(n) = h(N — 1 —n)

H(el®) = Zh(n)e 1“”‘+h( > 1) ﬁ“’(%)_p Z h(n)e jon N—3 N_3
n="02 H(e/®) = z h(n)e~ J“’"+h< 1) ~jo(*3 + Z h(n)e J@WN-1-n)
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N N-3

H(ef“’) z h(n)e /@™ + h(N

e
Taking e ’“\"z / outside

H(ej“’) =g/

Casel : Symmetrical impulse response and N - odd

h(n)[e‘f“’n. ejm(_

h(n)e—jw(N—l—n)

N-1

> )_|_e—jw(N—1—n).ejw(

e (152

N-1

)cosa) }
N-1
2h <T— n) cos wn}
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Casel : Symmetrical impulse response and N - odd

N—-1

_ 2
H(ej“)) = e_jw(T) Z a(n) cos wn
n=1

Where

a(0) = h<N = 1) a(n) = 2h (NT_l— n)

From this we can express the amplitude and phase function

Amplitude Phase
N-1
2 . N -1
|H(ej“))| = z a(n) cos wn LH(G"") = —w (T) = —aw
n=1
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Case?2 : Symmetrical impulse response and N - even

h(n) To arrange the limit we assume
1 [{l m=N—-1-—n N -

) ° T — T ° > a:T = 2.5 n=N-1—-m 2 N-1=N-1-m
0 1 2134 5

Given h(n) and find the Fourier transform H(eiv) Substitute in (1)

N-2
2
e H(el®) = Z h(n)e /on + z h( Ye Tl )
H(ej“)) = Z h(n)e-Jen n=0
n=0
N-3
For symmetric impulse response with even number of samples and , 2 : N-—-1\ _; (M) :
7 joY — —jon Jw —1_ —jo(N-1-n)
centre of symmetry lies between n = ¥ and% H(e®) Z h(n)e thi——]e - Z h(N —1—=n)e
n=0

Then we can split the equation into two parts _
P g P For symmetric impulse response h(n) = h(N — 1 —m)

H(e/?) = z h(n)e /on + z h(n)e J®n H(e/?) = Z h(n)e /@™ + Z h(n)e joW-1-n)
n=0 nz% n=0 n=0
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Case?2 : Symmetrical impulse response and N - even

N-2 N-2

2 2
H(el®) = Z h(n)e /o™ + Z h(n)e-/oN-1-n) Let o When n = 0 When n = %
= k=—=—-—n
» 2 N N-2 N
Taking e 19(55) outside N 0=7—*k 3k
N-2 n=-—-k
N—-1 & N—-1 N—-1 2
H(ej“)) = e_jw(T) Z (n)[e_jwn_ ejw(T) + e—ja)(N—l—n). ejw(T)]
n=0
N-2 . (N—1 1
Coven | 2 g (N1 H(ei®) = ¢~1(57) Zz( ) _Z
:e-m<u>{z ootz >+ef<m<z>>1} =BT (e -
n=0

o P
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Case?2 : Symmetrical impulse response and N - even

2

N
) . (N—-1 2 1
H(e/®) = e_]w(T) b(n) cos w (n — —)

Where
N
b(n) = 2h (5 — n)

From this we can express the amplitude and phase function

N
. & 1 _
|H(e/®)| = ;b(n) COS W <n — E) ¢H(e/®) = —w (%) = —qw
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Case 3 : Antisymmetrical impulse response and N - odd

In the similar way of symmetric, we get for antisymmetric as

N-1
| ju(N1) In :
H(ef‘“) =e /27 )e2 Z c(n) sin w(n)
n=1
Where
N -1
c(n) = 2h <T — n)

From this we can express the amplitude and phase function

Amplitude Phase
N-1
. . N-1
|H(e1‘“)| = z c(n) cos w(n) LH(eJ‘“) =g— <T>w =g_aw
n=1
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Case 4 : Ant symmetrical impulse response and N - even

In the similar way of symmetric, we get for antisymmetric as

N
) o N—1y jm )& 1
H(ef‘”) = e_]w(T)e% Z d(n) sinw <n _E>
n=1

Where
N
d(n) = 2h (E — n)

From this we can express the amplitude and phase function

AUE LG Phase
N
. 2 1 oy T (N=1\  m
|H(ef“’)|=Zd(n)sinw<n—§> LH(e )=§— — @ =5~ aw
n=1
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Casel : Symmetrical impulse response and N - odd

SUMMARY

N-1

_ 2
H(ej“’) = e_jw(y) Z a(n) cos wn

n=1

a(0) = h(N 2_ 1) a(n) = 2h (g— n)

Where

Case? : Symmetrical impulse response and N — even

Case 3 : Ant symmetrical impulse response and N - odd

N
_ N1y | & 1
H(e/®) = e_]w(T) b(n) cos w <n ——)
) 2

Where
N
b(n) = 2h (5 — n)

Case 4 : Ant symmetrical impulse response and N - even

N—-1

. . (N=-1\ jm &
H(ef‘”) = e_]w(T)eT c(n) sin w(n)

Where

(N1
c(n) =2 (T—n>

N
_ C(N-1\ jm ) & 1
H(ef“)) = e_Jw(T)e% 2 d(n) sin w (n _E)
n=1

Where
N
d(n) = 2h (E — n)
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Design of linear phase FIR filter

Why do we need a filter?

A notch / band
Sensor AtoD stop filter (50-
converter Hz)

Frequency response of a practical lowpass filter

Passband Ripple

Transition Band
Passband

Stopband

Stopband Ripple |
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Diqital filter design

1. Determining specification : we need to know how strong the noise component is relative to the
desired signal and how much we need to suppress the noise. This information is necessary to find
the filter with minimum order for this application.

2. Finding a transfer function : we need to find a transfer function H(z) which will provide the
required filtering.

3. Choosing a realization structure : there are many systems which can give the obtained transfer
function and we must choose the appropriate one.

4. Implementing the filter : You have a couple of options for this step: a software implementation
(such as a MATLAB or C code) or a hardware implementation (such as a DSP, a microcontroller,
or an ASIC).
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Design of linear phase FIR filter : window method

Suppose that we want to design a lowpass filter with a cut off
frequency of w,,given frequency response

1 lw| < w
H = ’ ¢
a(w) {O , otherwise

To find the equivalent time-domain representation, we calculate
the inverse discrete-time Fourier transform

T
1 )
hy(n) = - fHd(a))ef“’ndw
—TT

Wc
= i el dw
21
—i,
needs an infinite number of input samples to
sin(nw,) perform filtering and that the system is not a causal system. The
e solution will be to truncate the impulse response and use,
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Design of linear phase FIR filter : window method

hy(n) Non causal system causal system & linear

but the system is delayed by n = %

There for considering an applied shift to hy(n) and then multiplying with
window function W(n)

h(n) = hy <n — ) * W(n)
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Design of linear phase FIR filter : window method

Designed FIR Filter
— — —|deal Filter

Frequency response of the filter designed by a rectangular window
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Rectanqular window

Design of linear phase FIR filter : window methods

Hanning window

Hamming window

—-(N-1) (N-1)
Wem)={1 —5 Sn=
0 otherwise
(0] ¢
_J1 0n<N
Wrl) = {0 otherwise

G S 2mn —(N—1)< <(N—1)
Wy (n) = 4 .5 cos N_—1/" > <n< >
0, otherwise
or
05— 05cos(2) 0<n<n
WR(Tl) _ .0 — U.0 COoS T 7 sSn=s
0, otherwise

0.54 — 0.46 ann w1
Wy () =4 46 cos N_1/" > <n< >
0, otherwise
0] 8
0.54 — 0.46 2mm 0<n<N
WR(Tl) — . — U. (o{0 T 7 sSn=s

0, otherwise

Hanning window

Hamming window
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Design of linear phase FIR filter : window method

Design procedure

1. Choose desired frequency response of the filter Hd(ef‘”)
2. Take the invert Fourier transform of H;(e/%) to obtain hy(n)

3. Choose a window sequence W(n) and multiply it with hyz(n) to convert
infinite duration impulse response to finite duration impulse response

h(n) = hg(n) * W(n)
4. The transfer function of the filter is obtained by taking Z-transform of h(n)

www.iammanuprasad.com



YouTube - IMPLearn e e Ha(e’®)

Q) Design an ideal lowpass filter with frequency response Hy(e/0) ={1 for—zse=3 X
. . 0 otherwise 1
find the value of h(n) for N=11 find H(2).

Solution < 7 >
We can determine the desired impulse response h;(n) by taking inverse 2 2
Fourier Transform

% Since for n=0 the equation becomes infinity so lets
1 . apply limit
ha(n) = — fl.ef‘""dw
2r ). for n=0
2 mn mmn
5 = lim = lim = —
27t]n e 2 —e 2 " no0 nw 1m0 nz_”z 2  sinn
lim = 1
for n=1 T n-0 n
mm . T sin
2 sin—- __ 2 =2 =0318 =h(-1)
27T]n[ j sin— 5 _ 2 h(1) s -
nr
for n=2 sinm
h(2) = > =0 = h(-2)
Truncating hy (n) to 11 samples n
for n=3 Sin3_7T _ (=3)
2 =— =-0.106 =h(-3
h(3) =
mn ( ) 3 3n
.2 for n=4 4
— A U L A
h(n): ni fOT——SSnSS sin— _ _ .
0 otherwise T
for n=5 , 1
S = —  =10.0636 = h(-5) :
h(S) — 2 — 5 - www.tammanuprasad.com
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Now lets find the transfer function of the filter by taking Z Transform

(%) 5
H(Z) = z h(m)Z ™ = Z h(n)Z ™
=)
= h(=5)Z° + h(—4)Z* + h(-3)Z3 + 722+ h(-1DZ*+h(0) +h(1)Z7* +

5
— h(0) + z h(m)[Z" + Z]

=05+0318(Z' +Z )+ —0.106(Z% + Z73) + 0 + 0.0636(Z° + Z~5)

The transfer function of the realizable filter is

1@ =z

= 775[0.5 + 0.318(Z* + Z™1) — 0.106(Z3 + Z~3) + 0.0636(Z° + Z~5)]

H'(Z) = 0.0636 — 0.106Z72 + 0.318Z~* + 0.5Z7> + 0.31827% — 0.106Z~8 + 0.0636Z~1°

Z724+h(3)Z3+h(4)Z*+h(5)Z~5
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Design of linear phase FIR filter : window method

Design Steps

Plot the desired frequency response Hy(e/)

Determine the desired impulse response hy(n) by taking
the inverse Fourier transform of H, (ef“’)

hy(n) = 1.e/°"dw

N
E) | =
|
Nlﬁ\n\:m

Find the value of h;(n) forall n’
Choose a window sequence W (n) and multiply it with
h,(n) to get impulse response h(n)

h(n) = hq(n) * W(n)

Take the Z — Transform of h(n)to get transfer function of the
filter which is given and find coefficients

1@ =z 0
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Hale™)
Q) Design a linear phase FIR low pass filter using rectangular window by taking 7 samples of 1
window sequence and with a cut off frequency w, = 0.2m rad/sec
or
Q) Design a Iint;ar phase FIR filter low pass filter with frequency response )y —027 0.2 g
; 1 for—w,<w=<w
H;(el?) = ¢ =" = " where w, = 0.2 and N=7
a(e’®) {0 otherwise De &
Solution Since for n=0 the equation becomes infinity so lets
: L apply limit
We can determine the desired impulse response
h4(n) by taking inverse Fourier Transform for n=0
0.2m ~ sin0.2nn _ sin0.2wn
1 . hd(O) = IIIT(I)T = Tlllr%Toz = 0.2
= — ] Jeii n-— - — 0.
hd (n) o f l.e dw 0.2 .
-0.2m lim =1
n-0 n
1 . . for n=1 :
— jo.2mn __ ,—jo0.2mn - sin 0.2
2mjn le ¢ ] hy(1) = — 0187 = hy(—1)
_ 1 Dism0gm - sin 0.2nn
2mjn J ' T am for n=2
sin 0.212
Truncating hy (n) to 7 samples he(2) = —— = 0151 = hq(=2)
sin 0.2nn
hy(n) = nm for=-3<n<3 for n=3
sin 0.213
0 otherwise hq(3) = T 37 = 0.1009 = hg(=3)
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Now using rectangular window sequence W(n) and multiply h;(n) with it to get the impulse

response h(n)
: : . : -(N-1) (N-1)
(1 o<n<3 Since @ = 0 we get a non causal filter coefficient symmetrical about n=0 We(n) =41 5 Sns
Wr(n) = {0 otherwise so h(n) = h(-n) 0 otherwise
3
for n=0 h(O) = hd(O)WR(O) =0.2 H(Z) — h(O) + z h(n)[zn + Z—n]
n=1

= 1) = hq(1).Wr(1) = 0.187 = h(-1
=ty 7.(1) =y (1).: (R —1) = 0.2 + 0.187( )+ 0.151( )+ 0.1009(Z3 + 7~%)

= h(2) = h;(2).Wr(2 = 0.1514 = h(-2
e =2 (2) a(2)-Wr(2) =2 The transfer function of the realizable filter is
forn=3  h(3) = hy(3).Wx(3) = 0.1009 = h(-3) H'(Z) = -5 H(Z)

= 773[0.2 + 0.187( ) 4+ 0.151¢( ) + 0.1009(Z3 + Z73)]

h(n) = [0.1009,0.1514,0.187,0.2,0.187,0.1514,0.1009]
=0.1009 + 0.151Z71 + 0.187Z72 + 0.2Z73 + 0.187Z7% + 0.151Z >

Now lets find the transfer function of the filter by taking Z Transform +0.1009Z-°
w
2 3
H(Z) = Z h(n)Z™ = z h(n)Z ™
= h(-3)Z3 + 7% + Z' + h(0) + A

www.iammanuprasad.com
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FIR FILTER DESIGN USING

Q) Design a linear phase FIR high pass filter with frequency response

1 for%§|w|§n

Hy(e®) =
d(e ) 0 for|w|<z

Solution

We can determine the desired impulse response
h4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T

~a T
1 ) )
= — f 1.ef“mda)+j1.ef“mda)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? -eT—e_mn—(eﬂm e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

~ Find the value of h(n) for N=11 and find H(z). Use rectangular window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply

limit
for n=0
mm
" o | sintn . sin—- 1 3
d()_nlir(l) nmw "l_rgnfél 21_Z 4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
- T o r n i

4 4
_sinn
lim —
n-0 n
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Now using rectangular window sequence Wx(n) and multiply h;(n) with it to get the impulse

response h(n)

_J1 0<sn<s Since o = 0 we get a non causal filter coefficient symmetrical about n=0
Wr(n) = { : ~(N-1 N-1
R 0 otherwise so h(n) = h(-n) W () = {1 ( - ) <n< ( )
forn=0  h(0) = hy(0).WR(0) = 0.75 3 4 g wise
H(Z) = h(0) + z h(m)[Z" + Z]
forn=1  h(1) = hy(1).Wz(1) = —0.225= h(-1) =
forn=2  h(2) = he(2).We(2) =-01591=h(-2) — 0.75 — 0.225( ) — 0.159( ) — 0.075(Z3 + Z273)
5 =5
forn=3  h(3) = hy(3).Wx(3) =—0.075 = h(=3) +0.045(2° +27°)
for n=4 h(4) = hy(4).Wg(4) =0=h(—4) The transfer function of the realizable filter is
N—-1
forn=5  h(5) = hy(5).Wx(5) = 0.0450 = h(—5) H'@) =20
= 77°[0.75 — 0.225( ) — 0.159( ) —0.075(Z% + Z73)

h(n)
= [0.0450,0,—0.075,—0.1591, —0.225,0.75,—0.225 — 0.1591
— 0.0750,0.0450]

Now lets find the transfer function of the filter by taking Z Transform

S 5
H(Z) = Z h(m)Z™ = z h(n)Z~"
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A

+ h(0) + Z 1+ Z72+h(3)Z3+h(4)z*
+ h(5)Z~5

+ 0.045(Z° + Z7°)]

= 0.045 — 0.075Z7%2 — 0.159Z73 — 0.225Z % + 0.75Z7°> — 0.225Z°
—0.1591Z77 — 0.075Z78 4+ 0.0457°10
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FIR FILTER DESIGN USING

Q) Design a linear phase FIR filter high pass filter with frequency response

1 for%§|w|§n

T

Hy(e®) =
d(e ) 0 for|w|<z

Solution

We can determine the desired impulse response
hg4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T
1 T
= — f 1.ej“mda)+j1.ej‘””da)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? eT—e_]m—(eJ”” e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

Find the value of h(n) for N=11 and find H(z). Using Hanning window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0
" o | sintn sin—- 1 3
d()_nlir(l) - lr%nfll :1—Z T4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
o 2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
T, T o« "

4 4
_sinn
lim =1
n-0 n
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-(N-1) (N-1)

<n<

otherwise

2

Since « = 0 we get a non causal filter coefficient symmetrical

about n=0 so h(n) = h(-n)

Wyn(n) =

05 + 0.5 cos 2
. .0 COS 10
0

0<n<5

otherwise

Wyn(0) = 0.5+ 0.5 =1

TC

Wy, (1) = 0.5 + 0.5 cos z

09045 = Wy, (—1)

2T
Wy, (2) =05+ 0.5 cos— = 0.655 = Wy, (—2)

3
Wy, (3) = 0.5+ 0.5 cos? = 0.345 = Wy, (—3)

41t
Wy, (4) = 0.5+ 0.5 cos? = 0.0945 = Wy,(—4)

5m
Wy, (5) = 0.5+ 0.5 cos ¢ = 0 = Wy, (—5)
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Now using Hanning window sequence W(n) and multiply h;(n) with it to get the impulse
response h(n)

h(n) = hy(n).Wy,,(n) for —5<n<5 HZ) = h(O) + 25: A2 7
forn=0  h(0) = hq(0). Wy, (0) =0.75(1) = 0.75 =
forn=1  h(1) = ha(1).Wyn(1) = —0.225(0.905) = —0.204 = h(—1) = 0.75 — 0.204( ) — 0.104( ) — 0.026(Z3 + Z73)

for n=2 h(2) = hg(2). Wy, (2) = —0.159(0.655) = —0.104 = h(-2) _ ) ) _
The transfer function of the realizable filter is

forn=3  h(3) = hy(3). Wy,(3) = —0.075(0.345) = —0.026 = h(—3)

et

forn=d  h(4) = hy(4). Wy (4) =0 = h(—4) w2 =z 0

forn=5  h(5) = hq(5).-Wyn(5) =0 = h(-5) = 775[0.75 — 0.204( ) — 0.104( ) —0.026(Z° + Z73)]

h(n) = [-0.026,—0.104,—0.204,0.75,—0.204, —0.104, —0.026]
= —0.026Z7% — 0.104Z73 — 0.204Z~* + 0.75Z7°> — 0.204Z~°

Now lets find the transfer function of the filter by taking Z Transform —0.104Z77 — 0.026Z7°
N—-1
(T) 5
HD= ) h@z™ = ) hmz™"
N—1 -
n=—(3") "
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A
+h(0) +h(DZ7 '+ 1(2)Z72+h(3)Z3 + h(4)Z™* _
+ h(S)Z—S WWW.ld"’l"’ldl’lllpl"(lde.COlql
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FIR FILTER DESIGN USING HAMMING WINDOW

Q) Design a linear phase FIR filter high pass filter with frequency response

_ 1 for % <lw|<m
H;(el?) =
d( ) 0 for |w| <z

Solution

We can determine the desired impulse response
hg4(n) by taking inverse Fourier Transform

T
hg(n) = L JHd(ej“)).ej“m dw
21

T

~a T
1 ) )
= — f 1.ef“mda)+j1.ef“mda)
2T
TL'
1 e]wn e]wn T
SNl N e
=—_? -eT—e_mn—(eﬂm e 1”")]
2njn L
B S SO
= 2l j sin ] j sinnm

. . nm
SIn N — SIDT

hg(n) = -

- Find the value of h(n) for N=11 and find H(z). Using Hamming window

Truncating h;(n) to 11 samples

Since for n=0 the equation becomes infinity so lets apply limit

for n=0
mm
" o | sintn . sin—- 1 3
d()_nlir(l) nm "l_rgnfél 21_Z 4
for n=1
sinn—sinz
ha(1) = 4 =-0225 =hy(-1)
for n=2
2T
SIN 27— SINZ= = (1591 = hy(—2)
hd(2)= 2
T
for n=3
N
SINST = SINZ= = 0,075 = hy(—3)
hd(?’): 3
T
for n=4
sin4n—sin% =0 = hy(—4)
4) = - B
hd( ) 41
for n=5
sin5ﬂ—sin% =0.045 = hy(=5)
hd(s)z . d

5t

Hd(ej“’)

A
1 1
T, T o« "

4 4
_sinn
lim =1
n-0 n
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Hamming window

0.54 — 0.46 cos< 2mn ) , _(N—_l) (V-1

< <
N—1 2 ==

0, otherwise

Wy(n) =

Since @ = 0 we get anon causal filter coefficient symmetrical about

n=0 so h(n) = h(-n)

0.54 + 0.46 anm 0<n<5
WH(Tl)= . + 0. COSW SN s

0 otherwise

Wy (0) = 0.54 + 0.46 = 1

1T
Wi (1) = 0.54 +0.46 cos = = 0912 = W (~1)

21T
Wy(2) = 0.54 + 0.46 cos— = 0.682 = Wy(—2)

R¥4
Wy(3) = 0.54 + 0.46 cos? = 0.398 = Wy(—3)

41
Wy(4) = 0.54 + 0.46 cos— = 0.1678 = Wy(—4)

5t
Wy(5) = 0.54 + 0.46 cos? = 0.08 = Wy(-5)
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FIR FILTER DESIGN USING HAMMING WINDOW

Now using Hamming window sequence Wy (n) and multiply h;(n) with it to get the impulse

response h(n)

h(n) = hq(n). Wy (n)

forn=0  h(0) = hq(0). Wy (0)

forn=1  h(1) = ha(1).Wy(1)

forn=2  h(2) = hq(2). Wy(2)

forn=3  h(3) = ha(3). Wy (3)

forn=4  h(4) = hqa(4).Wy(4)

forn=5 " h(5) = hq(5). Wy (5)
h(n)

for —=5<n<5
=0.75(1) =075
= —0.225(0.912) = —0.2056 = h(—1)
= —0.159(0.682) = —0.1084 = h(—2)
= —0.075(0.398) = —0.03 = h(-3)
=0 = h(—4)

= —0.045(0.08) = 0.0036 = h(—5)

5
H(Z) = h(0) + Z hm)[Z" + 277
n=1

= 0.75 — 0.2056(
+0.0036(Z5 + Z75)

) —0.1084(

The transfer function of the realizable filter is

N—-1

1) =2 Conw

= 77°[0.75 — 0.2056(
+ 0.0036(Z° + Z7°)]

) —0.1084(

) —0.03(Z3 + Z773)

) —0.03(Z3 +7Z73)

= [0.0036,—0.03,—0.1084,—0.2056,0.75,—0.2056, —0.1084, —0.03,0.0036]

Now lets find the transfer function of the filter by taking Z Transform

(%) 5
H(Z) = h(n)Z™" = h(n)Z™™
= h(=5)Z> + h(—4)Z* + h(-3)Z3 + 7% + A
+ h(0) + Z 1+ Z72+h(3)Z3+h(4)z*

+ h(5)Z~5

= 0.0036 — 0.03Z272 — 0.1084Z~3 — 0.2052Z* + 0.75Z°
—0.2052Z7—0.1084Z7 — 0.03Z78 + 0003621
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In this method the ideal frequency response is sampled at sufficient number of points these samples are the DFT
coefficients of impulse response of filter. Hence impulse response of filter is determined by taking inverse DFT
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Design of linear phase FIR filter by frequency sampling technique

Q) Design a linear phase FIR low pass filter with cut off frequency of 0.5z rad/sample by taking 11

samples of ideal frequency response

Solution

For digital sampling we are taking the limit as 0 to 2x

Hd (ejw) A

& »
<« »

0] 0.5m T 1.57 2T

Due to symmetricity at (N-1)/2 then there will be an a
exponential term in the expression

1.e J*® ,0<w<05nm
Hd(ej‘”) = 0 ,05m < w < 1.5m
l.e /2@ 151 <w<27
b _N—l _ 11-1
where, a = =

=5

Sampling frequency w;, = % fork=0to 10

for k=0
fork=1
for k=2
for k=3
for k=4
for k=5

H(k)

2T * 0
@o =717
2T * 1
®o =77
2T * 2
@o =717
21 * 3
@o =717
2T * 4
®o =717
2T * 5
®o =717

=|0.18m
= 0.36m
= 0.557

= 0.73m

= 091n

|

Hd(ej“))
A

v

A

—0.57

H(k) =

4

0 1

11]

345678 9 10

0.57
2T * 6
Y=
21 * 7
— =127
“o ="
21 * 8
= = 1457
- 2 119
TT *
= = 1.641
- 21110
wo =" =182m
1
oisag  fork =012
0 ,fork =3to8
_ 52Tk
e 11, fork =910
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N—-1

2 ]
) = % H(0) + 2 z re |H(O) ]

5
..2mwk j2mnk 2tk j2nnk
=== 1+22Re[e_15%e] fln] 1+22Re[e JSAT ¢ 11 ]
2 27k
VIA
11 1+22Re[ej 11 (- 5)]
k=1

1

= L |1 4 2rele/En-9] 4 2pelorEm-9)]]

( .21k

1 21 AT -j5==— ,fork =0,1,2
h(n) = 1[1+2cos<—(n—5))+2cos(ﬁ(n—5)>] H(k) = 4 0 ,fork =3to8
Le_j‘r’T ,for k =9,10
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Now /et s calculate h(n) for n = 0 to 10, using symmetric condition ( h(n)=h(N-1-m) )

1+ 2cos

1+ 2 cos

for n=0
h(0) = —
11
for n=1
h(1) = 1
11|
for n=2
h(2) = 1
11|
for n=3
) —
11
for n=4
h(4) = —
11
for n=5 )

1
h(5) = 11 [1 + 2 cos

1+ 2cos

1+ 2cos

Design of linear phase FIR filter by frequency sampling technique

21 4
1+2cos< (0 — 5)>+2co (1— 0—5)

= —0.054

= 0.3194

2”5 5)) + 2 cos [ 7 ( = 0.4595
1 CoS 11 = V.

for n=6

h(6) = h(11—1—-6) = h(4) = 0.3194

for n=7
h(7) =h(11—-1-7) = h(3)

for n=8

h(8) = h(11 -1 -8) = h(2)

for n=9

h(9) = h(11-1-9) =h(1) = —0.054

for n=10

h(10) = h(11 -1 —10) = h(0)
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10
H(Z) = Z h(n)Z~"
n=0

— 2+ h(DZ7 '+ h(2)Z72%2 + Z34+h(4)Z*+h(5)Z>+h(6)Z7°+ Z77+h(8)Z8+h(9)Z7° + Z~10

H(Z) = 0.0694(1 4+ Z719) — 0.054(Z"1 + Z7%) — 0.1094(Z"2 + Z78) 4+ 0.0473(Z 3 + Z77) + 0.3194(Z~* + Z7°) + 0.45952Z 5

h(6) = h(11—1-6) = h(4) = 0.3194

h(7) = h(11 =1 —7) = h(3)

h(8) = h(11 -1 - 8) = h(2)

h(9) = h(11—1-9) = h(1) = —0.054

n(10) = RO 485 2 Rl
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Q) Using frequency sampling method, design a band pass filter with the following specifications , sampling frequency
F=8000Hz ,cut off frequency f,,=1000Hz, f,,=3000Hz, Determine the filter coefficients for N=7

Solution

For digital sampling we are taking the limit as 0 to 2z
2nfe;  2m1000 _ ™

=2nfT = = =—=0.25 - _2mk o
Wep = 2Tfq = 0 2 m Sampling frequency w;, = = fork=01t06
2nf,,  2m3000 37
w = T = = = = =
c2 fe2 I 3000 2 0.75m for k=0 0, = 2n7* 0 ~ 0
H.(eio) T B 2mx 1 2T % 4
(<) fork=l  wp=— =0.28m | fork=4 @, = ”7* = 1.14n
21 * 2
for k=2 wo = 7T7* =0.57n for k=5 wo = 27T7* > _ l4m
21 * 3 2T * 6
< [ — o = . for k=6 e - 1-7177:
N = e > for k=3 W 5 0.85m for k=6 Wy >
4 4 4 4

Due to symmetricity at (N-1)/2 then there will be an «
exponential term in the expression

1 ““E T (0 ,fork =0
e—jaw 0257 < w < 0.757 ' i | oI fork =1,2
Hd(ejw) — 0 ,0.757'[ <w< 1.257 E : H(k) = 0 ,fOT' k=3 ,4
R
<
—

e Ja®  125p < w <177

P ,fork =5,6

0257[ B T
==Y
“®

N-1 7-1
2 2

I
w
o

where, a = www.iammanuprasad.com
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N—-1

2 ]
) = % H(0) + 2 z re |H(O) ]

ﬂ j2mnk 1 ﬂ j2nnk
=—O+22Re[e k= 7| =X, ZZRB[B_]S e 7 ]
k=1
an
zRe[e - (n-3)]
2| Relp~7 =3 - w-3]]
=§2Re[e 7 @=3)] | spele= /73]
(0 ,fork =0
. 2Ttk
—j35== k=12
2 2m 4m e T
h(n) == lZcos(—(n—B))+2cos<7(n—3))] H(k) = 5 () ,fork = 3,4
.. 21k
ke_]3T ,fork =5,6
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Now /et s calculate h(n) for n = 0 to 6, using symmetric condition ( h(n)=h(N-1-n) )

for n=0
2T
h(0) = [2 COS (—
7
for n=1 )
h(1) = 2 5 21T
— 717"\ 7
for n=2 )
h2) = 2 ) 21
— 717"\ 7
for n=3
2T
h(3) = [2 COS (7

Design of linear phase FIR filter by frequency sampling technique

-3
(1-3
2-3

)

)
)

5 4
)>+ coS <7

o)

(1- 3))'
(2 - 3)>_

= —0.321

for n=4

h(4) =h(7—-1-4) = h(2)

for n=5
h(5) =h(7—1-5) = h(1) = —0.321

for n=6

h(6) = h(7—-1-6) = h(0)
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6
H(Z) = Z h(n)Z~"
n=0

— 2+ h(DZ7 '+ h(2)Z72%2 + Z34+h(4)Z*+h(5)Z°+ 76

A (14+276)—0321(Z" 1+ Z75) + 0.1145(Z72 + Z7%) + A

h(6) = h(7—1—-6) = h(0)

h(5)=h(7—1-5)=h(1) =-0321
h(4) =h(7—1—-4)=h(2) =0.1145
h(3)
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The FIR filters are non recursive type filters(present input depends on the present and previous inputs)
where as IIR filters are recursive type (present input depends on the present, past and output samples)

IR (infinite impulse response) filters are generally chosen for applications where linear phase is not
too important and memory is limited.

They have been widely deployed in audio equalization, biomedical sensor signal processing, 10T/lloT
smart sensors and high-speed telecommunication/RF applications

lIR filter have Impulse responses, hence they can be , all of
which generally have infinitely long impulse responses.

The basic techniques of IIR filter design transform well-known using
First we design an filter and then , hence it is

also called
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An 1IR filter is categorized by its theoretically infinite impulse response, Practically speaking, it is not possible to
compute the output of an IIR using this equation. Therefore, the equation may be re-written in terms of a finite
number of poles p and zeros g, as defined by the linear constant coefficient difference equation

ary(n — k)

NT=

q
y(m) = ) bex(n— k) -
k=0

=1

where, a(k) and b(k) are the filter s denominator and numerator polynomial coefficients, who s roots are equal to
the filter s poles and zeros respectively. Thus, a relationship between the difference equation and the z-transform
(transfer function) may therefore be defined by using the z-transform delay property such that,

> q —k
HZ) = ) y(mzn = k=02
_ __ZighZ
— 1+ Zk=1 akZ k

As seen, the Is a frequency domain representation of the filter.

Notice also that the - and the

Since the poles act on the output data, and affect stability, it is essential that their radii remain inside the unit circle
(i.e. <1) for BIBO (bounded input, bounded output) stability. The radii of the zeros are less critical, as they do not
affect filter stability.
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Specifications for magnitude response of lowpass filter

I
| ’a®
® < paxy 3 ; 'Tmnsmon:
'"Transition,
|
|}

Stopband

Digital Analog Alternate specifications of lowpass filter
w, — Passhand frequency (rad/samples) Q,, — Passband frequency (rad/sec) 2\/_
w; — Stopband frequency (rad/samples) Q, — Stopband frequency (rad/sec) €= 1—
w,. — 3dB cut off frequency (rad/samples) Q. — 3dB cut off frequency (rad/sec)
¢ — Passbhand parameter 8, — Passband error tolerance \/ (1 + 5p)2 — 62
A — Stopband parameter d; — max allowable magnitude in stop band — 5
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Design of steps of IIR Filters

1. Map the desired digital filter specifications into those for an equivalent analog
filter

Derive the analog transfer function for the analog prototype

Transform the transfer function of the analog prototype into an equivalent digital
filter transfer function
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Analog lowpass filter design

Mainly there are two types of analog filter designs
1. Butterworth Filter
2. Chebyshev filter

707

Analog low pass Butterworth Filter
The magnitude function of the lowpass Butterworth filter is

04

o
-
=]
&
&0
o
—
<

H(jQ)| =
|HGQ)| % Where N is the order of the

Q\* filter
[”(a—) ]
| 1.5

Properties of Butterworth filters ) Q.  frequency in radians/sec

1. Butterworth filters are all pole design

2. The magnitude of normalised Butterworth filter is 142 at cut off frequency €,
3. The filter order specified the filter

4. Magnitude is maximally flat at the origin

5. As N increases the response approaches to ideal response
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Analog low pass Butterworth Filter

1

s+1
1

s2++2s+1
1

(s+1D(s*+s+1)

1
(s2 4+ 0.765s + 1)(s2 + 1.848s + 1)
1
(s+1)(s?+0.6185s+1)(s*?+1.618s + 1)
1

(s2+1.931s + 1)(s2 +V2s + 1)(s2 + 0.517s + 1)
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YouTube - IMPLearn

Order of the Butterworth filter

[H($2)|

Let the maximum passband attenuation in positive dB is a, (<3dB) at passband
frequency Q, and a, is the minimum stopband attenuation at stopband frequency €, . The
magnitude function can be written as

. 1
HGQ)| = 1
Q\2N1z
1+ €2 (—) ]
[ Qyp
P—————’{‘_ﬁ_‘\“_—’
Passband g:i:zjﬂ“o" i;"z |
|H(jQ)|2 - Q,, — Passband frequency (rad/sec)

2N
1+ €2 (—)
Q, Q, — Stopband frequency (rad/sec)

e — Passband parameter

Taking log on both sides
A — Stopband parameter

a, - Passbhand attenuation

20log H(jQ) = 10log1 — 101log(1 + €2
gH(Q) E B ) a, — Stopband attenuation
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AtQ =0Q,,20logH(jQ) = —ay,

a, = 10log(1 + &%)

Taking antilog on both sides

10%1% =1 + 2

82 | 100.1ap —1

Order of the Butterworth filter

AtQ = Q. ,20logH(jQ) = —a

2N
2 [ {s
as; = 10log| 1 + ¢ 0
p

Taking antilog on both sides

2N
100.1a5 — 1= 82 &
‘QP

<'QS>2N B 100.16(5 —1
Ui g2

('QS>2N B 100.16!5 —1
'Qp

Taking log on both sides and
finding the value of N

100-1as — 1
o8 \/ 100%% — 1

log (3—;)

N =
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Steps to design an analog Butterworth filter

Find the order of the filter N &round off to higher integer
Find the transfer function H(s) for Q.=1 rad/sec for the values of N
Calculate value of cut-off frequency Q.

= W =

Find transfer function Ha(s) for the value of Q. calculated by substituting

S .
S—Q'”H(S)
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YouTube - IMPLearn Design an analog Butterworth filter

Q) For given specifications design an analog Butterworth filter

IH(S2)|

0.9 < |H(GQ)| <1for0<Q<02m
|IH(GQ)| <02 for04n <O <m

Solution
1
Q, =0.2n = Y e = 0.484
_ 1
Qs =04r = =0.2 3\ — 4.898 E
Ql
| l ransition | Sto i
Passband :zmd t b:m*;
4.898
log (E) log (252
N = = 04 = 3.34
lo (_S) lo (_n)
5\, 5\0.2n
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YouTube - IMPLearn Design an analog Butterworth filter

1 1
H(S,) = s+1

(s2 4+ 0.765s + 1)(s2 + 1.848s + 1) ‘ 4

s24+V2s +1
1
(s+1)(s?+s+1)

1
(524 0.7655 + 1)(s*+1.848s + 1)
1
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)

0.27 _ S SR ]
Q. = = = 0.247 (s2+1.931s + 1)(s2 +V2s + 1)(s2 + 0.517s + 1)
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Design an analog Butterworth filter

1
H(S,) =
QY (s2 +0.765s + 1)(s2 + 1.848s + 1)
1
HOR s 72 n 2
S S
((0.24n) +0.765 G757 + 1) ((0.24n) + 1848557+ 1)
0.323

H(s) =

(s2 +0.577s + 0.0577?%)(s? + 1.39s + 0.0576712)
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Q) Design an analog Butterworth filter that has a -2dB passband
attenuation at a frequency of 20 rad/sec and at least -10dB stopband
attenuation at 30 rad/sec

IH(S2)|

Solution

a,| = 2dB
O, = 20rad/sec | p|
Qs = 30rad/sec |as| = 10dB )
Ql
ransition o i
| Passband :zmd ‘ E;n*;
log J100-1as —1 log J100-1*10 —1
01la, __ 0.1%x2 _
N > 10 % — 1 > 10 1 _ oo
lo (&> lo (@) '
5\, 5120
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YouTube - IMPLearn Design an analog Butterworth filter

1 1
H(S,) = s+1

(s2 4+ 0.765s + 1)(s2 + 1.848s + 1) ‘ 4

s24+V2s +1
1
(s+1)(s?+s+1)

1
(524 0.7655 + 1)(s*+1.848s + 1)
1
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)
1
Q, 20

Q. = = — =21.386 (s2+1.931s + 1)(s2 +V2s + 1)(s? + 0.517s + 1)

- =
(100t@ — 1) (10%1+2 —1)2:4
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Design an analog Butterworth filter

S 2 S 2
(21.386) s o+ (21.386) + 184857 0e + 1

0.20921 x 10°
(s2 + 16.368s + 457.39)(s2 + 39.51s + 457.394)

H(Sn) =
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Design digital filter from analog filter
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Design of IR filter using Impulse invariant method

Here we require that the impulse response of the discrete system (digital filter) be the

discrete version of the impulse response of the analogue system (filter)

» Hence the name impulse invariant

In impulse invariant method the IIR filter is designed such that the unit impulse

response h(n) of digital filter is the sampled version of impulse response of analog filter

Z transform

I\
H(Z) = z h(n)Z—™
n=0

For impulse invariant method we do the mapping as

N
H(Z)|,_ st = Z h(n)e=st
n=0

S=0+j0Q 7 =rel®

reja) — e(a+jQ)T

Equating real and imaginary parts

r=e’"
Real part of analog Imaginary part of
pole =radius of Z- analog pole = angle

plane pole of digital pole
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Y m©
—
Casel:
o=20 <
_ 0T _ -
r=e’ ' =1 ~_|
\ 4
Z - Plane

Impulse invariant mapping map poles from s-plane’s
jQ axis to Z-plane s unit circle

Re(2)

\4

A

S-Plane
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Re' (2)

Y m©
Case 2 :
o < 0 (polesinleft half of S — plane) < >
r=e’l <1
Z - Plane

All S-plane poles with —ve real parts map to Z—plane
poles inside unit circle

A

S-Plane
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Re' (2)

Y m©
Case 3 :
o > 0 (polesinright half of S — plane) < >
r=e’l >1
Z - Plane

Poles in right half of S-plane map to digital poles
outside unit circle

J

A

S-Plane
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Let H_(S) iIs the system function of analog filter

I\
P, = Poles of analog filter

H(s=

- C, — Coefficients in partialfraction expansion

Taking inverse Laplace transform

N
h(t) = Z CePit
k=1

Sample h,(t) at t=nT

CkePleT z~ N

[0
E PkT

=

&)

I
s
=

S
Il
o
=
Il
[

H(z)

= ”MZ

N
h(n) = h(nT) = z C ePrnT
k=1

w
Il
=
—
I
@
o
&
~
N
I
[y

Now taking Z - Transform

H(z) = 2 e
n=0

Ck
H —
a(S) S— P,
k=1
L C
_ k
i) = Z 1 — ePrTz=1
k=1
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Steps to design IR filter using
Impulse invariant method

1. For the given specification find Ha(s), the transfer function of analog filter
Select the sampling rate of the digital filter, T seconds/sample

3. Express the analog filter transfer function as the sum of single pole filters

N
Ck

k=1S — Py

H,(s) =

4. Compute the Z transform of the digital filter by using the formula

= C
k
) = z 1 —ePrTz-1
k=1

TC,
H(z) = T Pl forT <1

k=1 www.iammanuprasad.com
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Q) For the analog transfer function H(s) =

Solution

2

H(s) = s+ 1D(s+2)

Using partial fraction method

Design of IIR filter by impulse invariant technique

(s+1)(s+2)

2=A(s+2)+B(s+1)

Ats=-1 Ats=-2
A=2 = —2

) — 2 2
() s+1) (s+2)
H(s) = —
For T=1 sec

Determine H(z) using impulse invariance method. Assume T=1sec

N
Ck

I —
() L5 P

k

\ C
N E : k
AEU= 1—ePiTz=1
k=1

2
1—e1z71 1 —e 2771

H(z) =

0.465z°1
H(z) = z

1—10.503z71 + 0.0497z2
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Q) An anlog filter has a transfer function H(s) =

invariant method for T=0.2 sec

Solution
10
H —
(s) s24+7s+10

Using partial fraction method

10 A s 2
s24+7s+10 (s+5) (s+2)

10 =A(s+2)+ B(s+5)
Ats=-2
A= -—-3.33 B = 3.33

oo =333 333
=679 512

H(s) =

For T=0.2 sec

S24+7s+10

Design a digital filter equivalent to

this using impulse

N
Ck

:1S_Pk

H(s) =
k

a C
N K
H(z) = Z 1 —ePxTz1
k=1
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Design of IIR filter by impulse invariant technique

Q) Apply impulse invariant method and find H(z) for H(s) =

Inverse Laplace of the given function

h(t) = e~% cos(bt)

For sampling the function substitute t=nT
h(nT) = e~ T cos(bnT)

Taking Z-transform

(0.0)

H(z) = 2 e~ cos(bnT) z7™

n=0

s+a
(s+a)?+b?

> ejbnT + e—jbnT
H — Z —anT ,—n
1 < ibT ,—1\" T ,—jbT.,—1\"
=EZ(e‘aTef z71)" 4 (e7Te=IPT771)
n=0
1 - . n : n
_ Z(e—(a—]b)TZ—l) + (e-(@tin)T,-1)
2n=0
= B 1 1 1
(Z) o E 1 — e—(a—jb)TZ—l + 1 — e—(a+jb)TZ—1]
H ) 1—e % cos(bT)z™ 1
YA —

1—2e 9T cos(bT)z71 + e—2aT z=2
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Steps to design IR filter using
Bilinear transformation method

The basis operation is to convert an analogue filter H(s) into an equivalent
digital filter H(z) by using bilinear approximation

1. From the given specifications find pre-warping analog frequency
using formula

Q=" wn?
— iy

Using the analog frequency find H(s) of the analog filter

Select the sampling rate of the digital filter, call it T seconds per

sample

1—-z"1

Into the transfer function found in step 2

4. Substitute s = ;

14+z~1
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YouTube - IMPLearn Design of 1R filter by impulse invariant technique

2

Q) Apply bilinear transformation to H(s) =

(s+1)+(s+2)
Solution
2 1+ z71)2
H(s) = 2 : —1)
(s+1)+ (s +2) (3 —2z"1)2
. 2[1-z"1
Substitute s = - l1+z‘1] at T=1sec 510 1+ 2z
A=
(1-0.33z71)
2
H(z) =
1—2z71 1—2z71
(2 1+Z_1] +1) +(2 1+Z_1] +2)
3 2
(1 =—z1+[1+ Z‘l]D ( 1-— 2‘1] )
(2[ 1+ z71 T 21+Z_1 v
2(1 4+ z71)?

T 2-2z2'4+14+z9+@2-2z1+2+2z0)
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YouTube - IMPLearn Design an analog Butterworth filter
Q) Design a digital analog Butterworth filter satisfying the constraints

T
0.707 < |[Hjw)| <1 for0 < w SE

|H(jw)| < 0.2 for%n <w<m

using bilinear transformation. Take T=1sec

o, in dB
Solution
T
= 0.707 c=1 (l)p = —
V1 + €2 2
L _ 02 A= 4.89 Ws = %Tn o]
m Passband ':)';:r(\’sition i;‘:‘z
Q= Etan2
. 2 w
2 w D
= — — .Q. = —tan—
Q. 7 tan > pT 2
, 3_7T ) % = 2.414
_ 4 Q, = —tan=
Q. = ItanT P 1 2
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YouTube - IMPLearn Design an analog Butterworth filter

A
o <_) 4.89 |
_\& log( 1 ) > 1.80 1
= 0 = - = s+
Lo <Q—S) log(2.414) ;
’ | 2 425 +1
S5t S

N =2 : 1
(s+1)(s?+s+1)

1

1
(524 0.7655 + 1)(s*+1.848s + 1)

s24+2s+1 i ‘
(s+1)(s2+0.618s+ 1)(s2+ 1.618s+ 1)

1
(s2+1.931s+ 1)(s2 +V2s + 1)(s2 + 0.517s + 1)

Hy(s) =

= 2 rad/sec

To find H(s) substitute s = Qi 1 4
H(s) = H(s) =
52, 1,8 () =7 28285 + 4
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YouTube - IMPLearn Design an analog Butterworth filter

1
H(s) =
(8) =z 78085 7 2
1
= 2
[2 ] +2.828 (2 ) + 4
A[1 + z71
H(s) = | |

41 —z71] 4+ 5.656[1 — z72] + 4[1 + z~ 1]
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